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1. Introduction

The prediction of pressure loss and void fraction in gas±liquid pipe ¯ows has been of
considerable research interest since the 1930s. Application may be found in a wide variety of
areas including the petroleum and chemical processing industries, in steam generation and
refrigeration equipment, and in nuclear reactors. Past approaches to such calculations have
been mainly empirical, and literally dozens of data correlations for the respective design
parameters appear in the literature. Unfortunately, most of these correlations were developed
under laboratory conditions, and are inaccurate when scaled-up to oil®eld applications
(Gregory and Fogarasi, 1985; Simpson et al., 1987), gas-condensate systems (Battara et al.,
1985), and steam-water systems (Idsinga et al., 1977). Further, their predictive capabilities are
generally biased towards the ¯ow conditions on which they are based (Mandhane et al., 1977).
More recent approaches to the problem have resulted in the development of so-called

`mechanistic' models, which allow analysis of speci®c ¯ow patterns based primarily on their
physical geometry. In horizontal ¯ow, where gravitational separation of the phases is common,
the most notable of these are due to Taitel and Dukler (1976) for strati®ed ¯ow, and Dukler
and Hubbard (1975) for slug ¯ow. It is noted however, that for strati®ed ¯ow models, the
number of empirical inputs required (i.e. the shear stresses) exceeds the number of derived
outputs (i.e. the pressure gradient and liquid holdup) by one. Slug ¯ow models generally
require further input variables, such as slug translational velocity, frequency and holdup. Thus,
mechanistic approaches may actually lead to an increase in the requirement of empirical
information.
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The use of Computational Fluid Dynamics (CFD) techniques for the calculation of pressure
drop and void fraction in gas±liquid pipe ¯ow is not common. Previous work has been mainly
restricted to the use of Marker and Cell or Volume of Fluid (VOF) methods for two- and
three-dimensional problems in free surface motion and bubble growth. However, for strati®ed
¯ows some investigators have attempted to use separated ¯ow models, obtaining steady ¯ow
solutions with the interface treated as a free-surface type boundary condition. Such
investigations in rectangular ducts include those of Akai et al. (1981), Issa (1988) and Srichai et
al. (1995).
One of the early CFD models of turbulent strati®ed ¯ow in a horizontal pipe was presented

by Shoham and Taitel (1984). The gas region was treated as a bulk ¯ow and the liquid region
¯ow ®eld was calculated using a ®nite di�erence solution of the two-dimensional axial
momentum equation, with the turbulent viscosity calculated from a zero equation model.
Solutions for turbulent liquid ¯ows were obtained in horizontal and slightly inclined pipes of
25.4 mm diameter. However, the published form of the axial momentum equation used in this
study did not include ®rst order viscosity gradient terms, casting some doubt over the validity
of the results.
Issa (1988) also obtained solutions for strati®ed gas±liquid pipe ¯ow with a smooth

interface. The ¯ow ®eld in both phases was calculated using the standard k±e turbulence model
with wall functions. The results showed reasonable agreement with predictions from the
mechanistic model of Taitel and Dukler (1976), however, they were con®ned to a relatively
small pipe diameter of 25.4 mm.
The primary purpose of the present work is to extend the approach of Issa (1988), to allow

predictions of pressure gradient and liquid holdup for turbulent, smooth-strati®ed two-phase
¯ow in a larger, 50 mm diameter, pipe. The two-dimensional axial momentum equations are
solved in each phase, and the turbulent viscosity is obtained with a low Reynolds number k±e
model, which allows resolution of the ¯ow in the viscous sub-layer in the vicinity of the wall
and gas±liquid interface. The only empirical information required in our approach is the
speci®cation of damping functions in the turbulence model.

Fig. 1. Schematic representation of strati®ed-smooth gas±liquid pipe ¯ow.
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The calculation of the two-phase ¯ow by such means o�ers distinct advantages over other,
more commonly used, methods. By directly calculating ¯ow near the boundaries of each phase,
we are able to directly predict the spatial wall and interfacial shear-stress distributions, in order
to assess the viability of commonly used empirical relations. Further, calculation of the two-
dimensional velocity ®eld allows estimation of the momentum correction factor for each phase,
which would be useful where liquid height gradients or variable gas densities exist. Such
calculations have not previously appeared in the literature.

2. Calculation procedure

Consider incompressible strati®ed gas±liquid ¯ow in a horizontal pipe, as shown in Fig. 1.
For brevity, the present results are restricted to ¯ows in which the gas±liquid interface is
smooth. Under steady-¯ow conditions, the axial pressure gradient dP/dz is balanced by the
liquid and gas wall shear stresses, denoted by tWL and tWG, respectively. Under such
circumstances, assuming a uni-directional ¯ow in both phases, except for the ¯uctuating
components in the cross-stream directions, the axial momentum equation is given by:
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where u, v and w are the velocities in the cross-stream, vertical, and axial directions,
respectively, and the prime denotes a ¯uctuating quantity. Assuming isotropic turbulence, the
Reynolds stresses in Eq. (1) are given by the usual de®nition of turbulent viscosity, i.e.
ÿru 'w '=mt(@u/@z+@w/@x ), ÿrv 'w '=mt(@v/@z+@w/@y ). Since, for unidirectional ¯ow, @u/@z=@v/
@z = 0, then Eq. (1) can be rearranged to give:

dP

dz
� me

"
@2w

@x2
� @

2w

@y2

#
� @mt

@x

@w

@x
� @mt

@y

@w

@y
, �2�

where me=m+mt is the e�ective viscosity.
In order to eliminate the use of wall functions, the turbulent viscosity is calculated here

using a low Reynolds number k±e model. For the present system this is given by:

mt � fmCmrk2=e,
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where Gk=(m+mt/sk)/r, Ge=(m+mt/se)/r, with sk=1.0, se=1.3, Cm=0.09, C1=1.92 and
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C2=1.3. Closure of the model is thus achieved by prescribing the wall damping functions fm, f1,
and f2. An evaluation of several formulations of these parameters has been performed by Patel
et al. (1985). In their study the equations due to Lam and Bremhorst (1981) showed good
agreement with experimental data obtained in turbulent pipe ¯ow, and have been adopted
here. These are given by:

fm � �1ÿ eÿ0:0165Rk �2
�
1� b

RT

�
, f1 � 1�

�
0:05

fm

�3

, f2 � 1ÿ eÿR
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where Rk � r
���
k
p

dw=m and RT=rk2/me. Lam and Bremhorst (1981) used b=20.5 for single-
phase pipe ¯ow, where the characteristic distance dw is de®ned as the radial distance to the
nearest wall. However, the presence of the interface in strati®ed gas±liquid ¯ow also acts to
dampen turbulence, and in the present work dw is taken as the distance to the nearest surface
i.e. either the wall or interface, as recommended by Demuren and Rodi (1984). For the present
co-ordinate system, this distance is the smaller of:
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where Z is normal to the respective surface, D is the pipe diameter, and hL is the mean liquid
height.
Results obtained for single-phase gas ¯ows in non-circular ducts (Newton, 1997), suggested

that b may be ¯ow regime dependent. Consideration of Eq. (4) indicates that as the transition
to laminar ¯ow is approached, it may be expected that b/R 2

T4 ÿ1 to mimic the destruction of
the turbulent viscosity. Further, it is reasonable to assume that b4 20.5 at relatively high
Reynolds numbers (i.e. ReG 1 50,000), in accordance with the ®ndings of Lam and Bremhorst
(1981). Thus, on the basis of additional numerical experimentation, the following expression
was adopted in all the calculations:

b � 20:5�1ÿ 1:45 exp�ÿ1:4� 10ÿ4ReG��: �6�
The assumption of isotropic turbulence is not made without restrictions. Both Nallasamy
(1987) and Rodi (1993) observe that since the k±e model assumes an isotropic eddy viscosity, it
has no in-built mechanism for the development of secondary ¯ows, which may be caused by
non-zero di�erences in the Reynolds stresses in planes normal to the axial direction for ¯ow in
non-circular ducts. Such an occurrence may become signi®cant in strati®ed gas±liquid ¯ow as
the height of the interface approaches the centre of the pipe. Demuren and Rodi (1984) and
Edwards and Jensen (1993) have observed that the presence of this motion has a noticeable
e�ect on the local wall shear stress. However, the calculation of secondary ¯ow requires the
independent evaluation of all the Reynolds stresses, involving a signi®cant increase in
computational cost for what is likely to be a marginal increase in predictive capability.
The ®nal elements of the model are the boundary conditions at the wall and interface. For

the solid walls the following boundary conditions are used:

w � k � mt � 0 �7�

C.H. Newton, M. Behnia / International Journal of Multiphase Flow 26 (2000) 327±337330



Since m is constant, then me=m at the walls. The boundary condition for the dissipation is
usually found by applying @k/@Z=mt=0 to the transport equation for k. The result is:
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However, as Eq. (8) involves the solution of the turbulent kinetic energy ®eld, a more
numerically convenient form of the wall boundary condition has been successfully applied by
Patel et al. (1985), and is given by:

@ew

@Z
� 0: �9�

Hanjalic and Launder (1976) have used Eq. (9) as a boundary condition for the dissipation in
their Reynolds stress model, and it is used for all wall boundaries in the present numerical
calculations.
It might be expected that the boundary conditions for coupling of the phases at the interface

are somewhat less straightforward than those for a solid wall. However, Nezu and Nakagawa
(1993) have suggested that the presence of a free surface acts to reduce the length scale of
turbulence, in a similar manner to the presence of a wall. Rodi (1993) has proposed that the
presence of a free surface can, as a ®rst approximation, be treated as a moving wall. In the
calculations for smooth-strati®ed ¯ow presented here, this approximation is adopted. Hence,
the following conditions are used at the free surface:

wL � wG, kL � kG � 0, mtG
� mtL

� 0, �10�

Fig. 2. Distribution of grid points in the physical domain. Adapted mesh for jL=0.03 m/s, jG=1.67 m/s, and
hL=13.68 mm.
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with the dissipation calculated using Eq. (9). Thus, the interface acts as a moving wall with the
two phases coupled through the velocity ®eld. The numerical solution of the ¯ow equations is
conducted separately for each phase, with these boundary conditions providing the coupling
between these phases. The liquid height hL (and consequently, the computational grid) is
continually adjusted during the calculations to satisfy continuity requirements. For the gas
region calculations the velocity boundary condition at the interface is obtained from the
solution of the liquid-¯ow ®eld, except at the ®rst height iteration where the velocity pro®le
across the interface is introduced empirically as a starting condition for more rapid
convergence. The interfacial shear stresses resulting from the calculated gas-¯ow ®eld are then
used to provide a boundary condition for the liquid region, by assuming:

tiG � tiL �11�
across the interface. To compensate for the turbulence damping e�ect of the interface, the wall
functions given by Eq. (4) are used on both sides of the free surface.
The model Eqs. (1)±(11) were transformed into the bipolar coordinate system for adaptation to

the present geometry. Such a transformation is given elsewhere (e.g. Issa, 1988) and is not repeated
here. An example of a typical physical grid mapped in the bipolar coordinate system is given in
Fig. 2. Note the compactness of the grid in the near wall and interfacial regions. Adequate resolution
of large gradients of k and e in the viscous sub-layers of these regions suggests a nominal grid spacing
of Z� � Z

��������
rtw
p

=m11, where tw is the local wall shear stress. In the present calculations 40 grid
points were placed approximately in the region 0 < Z+ < 40 at all boundaries. More
comprehensive details of the grid construction can be found in Newton (1997).
The governing ¯ow equations were solved in each phase using an iterative ®nite di�erence

technique. Both ®rst- and second-order di�erencing schemes were used, but due to the close grid
spacing, little di�erence was observed in the results. The input variables are pipe diameter D, and
liquid and gas super®cial velocities jL and jG. The model predicted the axial pressure gradient and
liquid holdup, and gave the two-dimensional velocity and turbulence ®elds. A post-processor
was used to derive the wall and interfacial shear stress distributions from the calculated results.
Computations were performed on both an HP-9000 workstation, and a Pentium PC.

3. Results and discussion

In the present model it is assumed that the mean ¯ow in both phases is uni-directional,
steady, and fully developed. Under such circumstances there can be no interface level gradient
unless there is a change in gas density, which may be due either to the favourable pressure
gradient, or to heat transfer through the pipe walls. For the strati®ed ¯ow conditions modelled
here, the pressure gradients are small and the ¯uid properties are assumed to be those at
atmospheric temperature and pressure. It is also noted that at small liquid holdups interface
may contain signi®cant curvature in the cross-stream direction. Under such circumstances the
present interfacial boundary conditions can not be expected to accurately simulate the ¯ow.
The calculations shown here are generally restricted to mean liquid holdups higher than 0.15.
Calculations of pressure gradient and liquid holdup are compared with the mechanistic

model of Taitel and Dukler (1976), and the experimental data of Newton and Behnia (1996) in
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Fig. 3. The lack of experimental data is due to the di�culty in obtaining pressure gradient
measurements under the conditions required to maintain a smooth gas±liquid interface, i.e. low
bulk velocities, in both phases. For this reason the pressure gradient measurements in
particular incorporate a reasonably signi®cant degree of uncertainty, estimated here to be as
high as 30%, at the lowest ¯ow rates.
The pressure gradient results are represented by a gas pressure gradient multiplier, de®ned as:

fG �
���������������������
�dP=dz�TP

�dP=dz�GS

s
, �12�

where the subscripts TP and GS denote two-phase and gas only. Both the pressure gradient and
liquid hold-up results are correlated with the Lockhart±Martinelli parameter, de®ned by:

w �
���������������������
�dP=dz�LS

�dP=dz�GS

s
, �13�

where the subscript LS denotes single phase liquid ¯ow. The results indicate that the present
model is quite successful at predicting both the pressure gradient and liquid holdup. It is noted
that the smooth strati®ed ¯ow results of Issa (1988), obtained in a pipe of diameter 25.4 mm,
closely followed the predictions of the Taitel and Dukler (1976) model.
In order to check the sensitivity of the revised turbulence model, various constant values of

bG were used in the gas region, whilst holding bL constant in the liquid region. The results,
shown in Table 1, indicate that such a variation has little e�ect on the overall calculations. The

Fig. 3. Comparison of predicted and measured data for strati®ed-smooth ¯ow: (a) axial pressure gradient, (b) liquid

holdup.

Table 1

E�ect of bG for bL=3.0, jL=0.07 m/s, jG=0.93 m/s

bG dP/dz (Pa/m) hL (mm)

15.0 2.0 13.6
9.0 2.0 13.7

4.0 1.9 13.9

C.H. Newton, M. Behnia / International Journal of Multiphase Flow 26 (2000) 327±337 333



variation in the wall shear stress pro®le, shown in Fig. 4, also shows that the e�ect of variable
b is quite small. The relaxation of gas wall shear stress observed experimentally by Kowalski
(1987), is also evident in Fig. 4. A signi®cant rise in the liquid wall shear stress in the
immediate vicinity of the interface is also evident, and was observed in all the computations
reported here. Direct comparison with measurements is impossible at such low Reynolds
numbers, where the Preston tubes used in the experiments became ine�ective. This is also the
case for velocity pro®le measurements using Pitot tubes.
A representative pro®le for the interfacial shear stress is shown as a function of variable gas

region b in Fig. 5. It is noted that this parameter is essentially constant across the interface,
except in the near wall region where a relaxation is observed.
The wall and interfacial shear stresses were averaged over their respective domains and

average friction factors were then calculated from f= 2t-/ru-2, where t- is the perimeter-
averaged shear stress, and u- is the area-averaged phase velocity. Results for the gas wall region
are shown in Fig. 6, where it may be observed that the Blasius equation increasingly over-
predicts the calculated values as the phase Reynolds number is increased, as observed
experimentally by Newton and Behnia (1996). The average predicted interfacial friction factors

Fig. 5. Calculated distribution of the interfacial shear stress for jL=0.03 m/s, jG=1.67 m/s.

Fig. 4. Radial distribution of the wall shear stress. y=zero at the top of the pipe.
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are compared with the gas wall friction factors in Fig. 7. It is commonly assumed (e.g. Taitel
and Dukler, 1976; Sadatomi et al., 1993) that fi=fG, especially for smooth gas±liquid
interfaces. The present calculations suggest that the gas wall shear stress is substantially higher
than that at the interface. Finally, it is observed that the liquid wall friction factors are
considerably over-predicted by the single phase Blasius type equation, as shown in Fig. 8.
Under such circumstances the ratio of wall to cross-sectional area of the liquid region is far

Fig. 6. Comparison of the calculated average gas wall friction factor calculations with the Blasius equation.

Fig. 7. Comparison of calculated average gas wall and interfacial friction factors.

Fig. 8. Comparison of the calculated average liquid wall friction factors with the Blasius equation.

C.H. Newton, M. Behnia / International Journal of Multiphase Flow 26 (2000) 327±337 335



greater than for a fully circular region, and equations based on full pipe ¯ow cannot be relied
upon to give accurate results for friction factor. The calculated phase momentum correction
factors also consistently di�er from those expected from single-phase pipe ¯ow. Over the range
of calculations considered here the gas and liquid correction factors were both approximately
1.12, which are considerably higher than those expected in turbulent single-phase pipe ¯ow.

4. Conclusion

Numerical calculations of axial pressure gradient, liquid holdup, and the ¯ow and turbulence
®elds in a strati®ed gas±liquid pipe ¯ow have been presented. A low Reynolds number k±e
formulation was used to model the turbulent viscosity. This model incorporated wall damping
functions obtained from single-phase pipe ¯ow. Although minor `tuning' of the wall damping
functions was performed, the results indicated that such tuning had little e�ect, and agreement
with experimental data was excellent. Evidently, standard wall functions have su�cient
generality to be applied to the two-phase ¯ows considered here. This conclusion contrasts with
the poor performance of commonly used single-phase ¯ow relationships to model wall and
interfacial shear stresses, as demonstrated by the present calculations. However, since the
present model does not rely on such information, it is believed that it may have considerable
value in further research into more general strati®ed two-phase ¯ows.
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